Atomistic Analysis of Phase Segregation Patterning in Binary Thin Films Using Applied Mechanical Fields

نویسندگان

  • Alex M. Nieves
  • Vaclay Vitek
چکیده

The patterned compositional evolution in thin films of a binary alloy controlled by modulated stress fields is studied by employing Monte Carlo simulations. General features of stress-patterned phase segregation are probed using a binary Lennard-Jones potential in which the lattice misfit between the two components of the alloy is varied systematically. In general, patterning of the microstructure is found to be more robust in the low-mismatch binary systems because large lattice mismatch promotes plastic, and therefore, irreversible relaxation, during annealing. It is shown that some control over the relaxation process can be achieved by careful design of the applied thermal annealing history. Additional calculations have been performed using two other potentials for binary metallic systems, an embedded-atom method (EAM) potential for Cu–Ag and a modified embedded-atom method (MEAM) potential for Cu–Ni that represent examples of high and lowmismatched systems, respectively. The results obtained with generic Lennard-Jones potentials are in excellent agreement with those from the EAM and MEAM potentials suggesting that it is possible to derive general guidelines for accomplishing stress-patterned segregation in a variety of thin films of binary alloys. Disciplines Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering Comments Suggested Citation: Nieves, A.M., V. Vitek and T. Sinno. "Atomistic analysis of phase segregation patterning in binary thin films using applied mechanical fields." Journal of Applied Physics. 107, 054303. © 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/10.1063/ 1.3309480. This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cbe_papers/131 Atomistic analysis of phase segregation patterning in binary thin films using applied mechanical fields Alex M. Nieves, V. Vitek, and T. Sinno Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Received 2 September 2009; accepted 9 January 2010; published online 2 March 2010 The patterned compositional evolution in thin films of a binary alloy controlled by modulated stress fields is studied by employing Monte Carlo simulations. General features of stress-patterned phase segregation are probed using a binary Lennard-Jones potential in which the lattice misfit between the two components of the alloy is varied systematically. In general, patterning of the microstructure is found to be more robust in the low-mismatch binary systems because large lattice mismatch promotes plastic, and therefore, irreversible relaxation, during annealing. It is shown that some control over the relaxation process can be achieved by careful design of the applied thermal annealing history. Additional calculations have been performed using two other potentials for binary metallic systems, an embedded-atom method EAM potential for Cu–Ag and a modified embedded-atom method MEAM potential for Cu–Ni that represent examples of high and low-mismatched systems, respectively. The results obtained with generic Lennard-Jones potentials are in excellent agreement with those from the EAM and MEAM potentials suggesting that it is possible to derive general guidelines for accomplishing stress-patterned segregation in a variety of thin films of binary alloys. © 2010 American Institute of Physics. doi:10.1063/1.3309480

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Influence of aging temperature on phase transformation and mechanical behavior of NiTi thin films deposited by magnetron sputtering technique

In this study, NiTi thin films were deposited on the glass and NaCl substrates by means of magnetron sputtering method. The influence of aging temperature, over the range 300-500 oC, on phase transformation and mechanical properties of the sputtered NiTi thin films were studied by differential scanning calorimetry (DSC) and nano-indentation assay, respectively. The DSC curves showed that the ag...

متن کامل

Investigation of the mechanical properties of various yttria stabilized zirconia based thin films prepared by aqueous tape casting

In this study various yttria doped  zirconia based thin films were prepared by the aqueous tape casting method. The rheological property of the paste was studies. The phase content and microstructure of the samples was investigated by X-ray diffraction and scanning electron microscope, respectively. The mechanical properties of thin films were studied by Vickers microhardness and nanoindentatio...

متن کامل

Disjoining potential and grain boundary premelting in binary alloys

Many grain boundaries (GBs) in crystalline materials develop highly disordered, liquidlike structures at high temperatures. In alloys, this premelting effect can be fueled by solute segregation and can occur at lower temperatures than in single-component systems. A premelted GB can be modeled by a thin liquid layer located between two solid-liquid interfaces interacting by a disjoining potentia...

متن کامل

Effect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films

Polyurethane/zeolite 13X nanocomposite films were fabricated using solution casting method. The synthesized nanocomposite films were structurally characterized using SEM, TGA and tensile analysis. SEM images showed appropriate distribution of nanocrystalline zeolite particles within polyurethane matrix. Better thermal stability of nanocomposite films in comparison to neat polyurethane was shown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015